9 research outputs found

    Computational Complexity of Certifying Restricted Isometry Property

    Get PDF
    Given a matrix AA with nn rows, a number k<nk<n, and 0<δ<10<\delta < 1, AA is (k,δ)(k,\delta)-RIP (Restricted Isometry Property) if, for any vector xRnx \in \mathbb{R}^n, with at most kk non-zero co-ordinates, (1δ)x2Ax2(1+δ)x2(1-\delta) \|x\|_2 \leq \|A x\|_2 \leq (1+\delta)\|x\|_2 In many applications, such as compressed sensing and sparse recovery, it is desirable to construct RIP matrices with a large kk and a small δ\delta. Given the efficacy of random constructions in generating useful RIP matrices, the problem of certifying the RIP parameters of a matrix has become important. In this paper, we prove that it is hard to approximate the RIP parameters of a matrix assuming the Small-Set-Expansion-Hypothesis. Specifically, we prove that for any arbitrarily large constant C>0C>0 and any arbitrarily small constant 0<δ<10<\delta<1, there exists some kk such that given a matrix MM, it is SSE-Hard to distinguish the following two cases: - (Highly RIP) MM is (k,δ)(k,\delta)-RIP. - (Far away from RIP) MM is not (k/C,1δ)(k/C, 1-\delta)-RIP. Most of the previous results on the topic of hardness of RIP certification only hold for certification when δ=o(1)\delta=o(1). In practice, it is of interest to understand the complexity of certifying a matrix with δ\delta being close to 21\sqrt{2}-1, as it suffices for many real applications to have matrices with δ=21\delta = \sqrt{2}-1. Our hardness result holds for any constant δ\delta. Specifically, our result proves that even if δ\delta is indeed very small, i.e. the matrix is in fact \emph{strongly RIP}, certifying that the matrix exhibits \emph{weak RIP} itself is SSE-Hard. In order to prove the hardness result, we prove a variant of the Cheeger's Inequality for sparse vectors

    Betti Numbers of Random Hypersurface Arrangements

    Full text link
    We study the expected behavior of the Betti numbers of arrangements of the zeros of random (distributed according to the Kostlan distribution) polynomials in RPn\mathbb{R}\mathrm{P}^n. Using a random spectral sequence, we prove an asymptotically exact estimate on the expected number of connected components in the complement of ss such hypersurfaces in RPn\mathbb{R}\mathrm{P}^n. We also investigate the same problem in the case where the hypersurfaces are defined by random quadratic polynomials. In this case, we establish a connection between the Betti numbers of such arrangements with the expected behavior of a certain model of a randomly defined geometric graph. While our general result implies that the average zeroth Betti number of the union of random hypersurface arrangements is bounded from above by a function that grows linearly in the number of polynomials in the arrangement, using the connection with random graphs, we show an upper bound on the expected zeroth Betti number of random quadrics arrangements that is sublinear in the number of polynomials in the arrangement. This bound is a consequence of a general result on the expected number of connected components in our random graph model which could be of independent interest

    Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial

    Get PDF
    BACKGROUND: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. METHODS: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. FINDINGS: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96-1·28). INTERPRETATION: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. FUNDING: National Institute for Health Research Health Services and Delivery Research Programme

    Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial

    Get PDF
    Background: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. Methods: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. Findings: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96–1·28). Interpretation: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. Funding: National Institute for Health Research Health Services and Delivery Research Programme

    Betti Numbers of Deterministic and Random Sets in Semi-Algebraic and O-Minimal Geometry

    No full text
    Studying properties of random polynomials has marked a shift in algebraic geometry. Instead of worst-case analysis, which often leads to overly pessimistic perspectives, randomness helps perform average-case analysis, and thus obtain a more realistic view. Also, via Erd˝os’ astonishing ’probabilistic method’, one can potentially obtain deterministic results by introducing randomness into a question that apriori had nothing to do with randomness. In this thesis, we study topological questions in real algebraic geometry, o-minimal geometry and random algebraic geometry, with motivation from incidence combinatorics. Specifically, we prove results along two different threads: (a) Topology of semi-algebraic and definable (over any o-minimal structure over R) sets, in both deterministic and random settings. (b) Topology of random hypersurface arrangements. In this case, we also prove a result that could be of independent interest in random graph theory. Towards the first thread, motivated by applications in o-minimal incidence combinatorics, we prove bounds (both deterministic and random) on the topological complexity (as measured by the Betti numbers) of general definable hypersurfaces restricted to algebraic sets (Basu et al., 2019b). Given any sequence of hypersurfaces, we show that there exists a definable hypersurface Γ, and a sequence of polynomials, such that each manifold in the sequence of hypersurfaces appears as a component of Γ restricted to the zero set of some polynomial in the sequence of polynomials. This shows that the topology of the intersection of a definable hypersurface and an algebraic set can be made arbitrarily pathological. On the other hand, we show that for random polynomials, the Betti numbers of the restriction of the zero set of a random polynomial to any definable set deviates from a B´ezout-type bound with bounded probability. Progress in o-minimal incidence combinatorics has lagged behind the developments in incidence combinatorics in the algebraic case due to the absence of an o-minimal version of the Guth-Katz polynomial partitioning theorem, and the first part of our work explains why this is so difficult. However, our average result shows that if we can prove that the measure of the set of polynomials which satisfy a certain property necessary for polynomial partitioning is suitably bounded from below, by the probabilistic method, we get an o-minimal polynomial partitioning theorem. This would be a tremendous breakthrough and would enable progress on multiple fronts in model theoretic combinatorics. Along the second thread, we have studied the average Betti numbers of random hypersurface arrangements (Basu et al., 2019a). Specifically, we study how the average Betti numbers of a finite arrangement of random hypersurfaces grows in terms of the degrees of the polynomials in the arrangement, as well as the number of polynomials. This is proved using a random Mayer-Vietoris spectral sequence argument. We supplement this result with a better bound on the average Betti numbers when one considers an arrangement of quadrics. This question turns out to be equivalent to studying the expected number of connected components of a certain random graph model, which has not been studied before, and thus could be of independent interest. While our motivation once again was incidence combinatorics, we obtained the first bounds on the topology of arrangements of random hypersurfaces, with an unexpected bonus of a result in random graphs
    corecore